ATMEGA128RFA1-ZU Atmel, ATMEGA128RFA1-ZU Datasheet - Page 438

IC AVR MCU 2.4GHZ XCEIVER 64QFN

ATMEGA128RFA1-ZU

Manufacturer Part Number
ATMEGA128RFA1-ZU
Description
IC AVR MCU 2.4GHZ XCEIVER 64QFN
Manufacturer
Atmel
Series
ATMEGAr

Specifications of ATMEGA128RFA1-ZU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3.5dBm
Sensitivity
-100dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
12.5mA
Current - Transmitting
14.5mA
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Rf Ic Case Style
QFN
No. Of Pins
64
Supply Voltage Range
1.8V To 3.6V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
38
Number Of Timers
6
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVR128RFA1-EK1
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128RFA1-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128RFA1-ZUR
Manufacturer:
ON
Quantity:
56 000
28.4 TAP Controller
438
ATmega128RFA1
Figure 28-2. TAP Controller State Diagram
The TAP controller is a 16-state finite state machine that controls the operation of the
Boundary-scan circuitry, JTAG programming circuitry, or on-chip debug system. The
state transitions depicted in
(shown adjacent to each state transition) at the time of the rising edge at TCK. The
initial state after a Power-on Reset is Test-Logic-Reset.
As a definition in this document, the LSB is shifted in and out first for all Shift Registers.
Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG
interface is:
• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter
1
0
the Shift Instruction Register – Shift-IR state. While in this state, shift the four bits of
the JTAG instructions into the JTAG Instruction Register from the TDI input at the
rising edge of TCK. The TMS input must be held low during input of the 3 LSBs in
order to remain in the Shift-IR state. The MSB of the instruction is shifted in when
this state is left by setting TMS high. While the instruction is shifted in from the TDI
pin, the captured IR-state 0x01 is shifted out on the TDO pin. The JTAG Instruction
Test-Logic-Reset
Run-Test/Idle
0
1
Figure 28-2 above
1
0
Select-DR Scan
Capture-DR
Update-DR
Pause-DR
Exit1-DR
Exit2-DR
Shift-DR
1
0
0
1
0
1
1
0
depend on the signal present on TMS
1
1
0
0
1
0
Select-IR Scan
8266B-MCU Wireless-03/11
Capture-IR
Update-IR
Pause-IR
Exit1-IR
Exit2-IR
Shift-IR
1
0
0
1
0
1
1
0
1
1
0
0

Related parts for ATMEGA128RFA1-ZU