ATMEGA128RFA1-ZU Atmel, ATMEGA128RFA1-ZU Datasheet - Page 264

IC AVR MCU 2.4GHZ XCEIVER 64QFN

ATMEGA128RFA1-ZU

Manufacturer Part Number
ATMEGA128RFA1-ZU
Description
IC AVR MCU 2.4GHZ XCEIVER 64QFN
Manufacturer
Atmel
Series
ATMEGAr

Specifications of ATMEGA128RFA1-ZU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3.5dBm
Sensitivity
-100dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
12.5mA
Current - Transmitting
14.5mA
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Rf Ic Case Style
QFN
No. Of Pins
64
Supply Voltage Range
1.8V To 3.6V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
38
Number Of Timers
6
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVR128RFA1-EK1
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128RFA1-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128RFA1-ZUR
Manufacturer:
ON
Quantity:
56 000
264
ATmega128RFA1
The PWM resolution for the phase and frequency correct PWM mode can be defined by
either ICRn or OCRnA. The minimum resolution allowed is 2 bit (ICRn or OCRnA set to
0x0003), and the maximum resolution is 16 bit (ICRn or OCRnA set to MAX). The PWM
resolution R
In phase and frequency correct PWM mode the counter is incremented until the counter
value matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA
(WGMn3:0 = 9). The counter has then reached TOP and changes the count direction.
The TCNTn value will be equal to TOP for one timer clock cycle. The timing diagram for
the phase correct and frequency correct PWM mode is shown in
The figure shows phase and frequency correct PWM mode when OCRnA or ICRn is
used to define TOP. The TCNTn value is shown in the timing diagram as a histogram
for illustrating the dual-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare
matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a
compare match occurs.
Figure 18-9. Phase and Frequency Correct PWM Mode Timing Diagram
The Timer/Counter Overflow Flag (TOVn) is set at the timer clock cycle when the
OCRnx Registers are updated with the double-buffered value (at BOTTOM). The OCnA
or ICFn Flag is set after TCNTn has reached TOP when either OCRnA or ICRn is used
for defining the TOP value. The Interrupt Flags can then be used to generate an
interrupt each time the counter reaches the TOP or BOTTOM value.
When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx.
As Figure 18-9 shows the output generated is, in contrast to the phase correct mode,
symmetrical in all periods. Since the OCRnx Registers are updated at BOTTOM, the
length of the rising and the falling slopes will always be equal. This gives symmetrical
output pulses and is therefore frequency correct.
TCNTn
OCnx
OCnx
Period
PFCPWM
1
in bits can be calculated with the following equation:
R
PFCPWM
2
=
log(
3
log(
TOP
) 2
+
) 1
4
8266B-MCU Wireless-03/11
Figure 18-9
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)
(COMnx1:0 = 2)
(COMnx1:0 = 3)
OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)
below.

Related parts for ATMEGA128RFA1-ZU