ATMEGA128RFA1-ZU Atmel, ATMEGA128RFA1-ZU Datasheet - Page 306

IC AVR MCU 2.4GHZ XCEIVER 64QFN

ATMEGA128RFA1-ZU

Manufacturer Part Number
ATMEGA128RFA1-ZU
Description
IC AVR MCU 2.4GHZ XCEIVER 64QFN
Manufacturer
Atmel
Series
ATMEGAr

Specifications of ATMEGA128RFA1-ZU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3.5dBm
Sensitivity
-100dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
12.5mA
Current - Transmitting
14.5mA
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Rf Ic Case Style
QFN
No. Of Pins
64
Supply Voltage Range
1.8V To 3.6V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
38
Number Of Timers
6
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVR128RFA1-EK1
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128RFA1-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128RFA1-ZUR
Manufacturer:
ON
Quantity:
56 000
19.4 Register Description
19.4.1 GTCCR – General Timer/Counter Control Register
306
ATmega128RFA1
Enabling and disabling of the clock input must be done when Tn has been stable for at
least one system clock cycle. Otherwise there is a risk of generating a false
Timer/Counter clock pulse.
Each half period of the applied, external clock must be longer than one system clock
cycle to ensure correct sampling. The external clock must be guaranteed to have less
than half the system clock frequency (f
the edge detector uses sampling, the maximum frequency of a detectable external
clock is half the sampling frequency (Nyquist sampling theorem). However due to
variation of the system clock frequency and duty cycle caused by Oscillator source
(crystal, resonator and capacitors) tolerances, it is recommended to limit the maximum
frequency of an external clock source to less than f
can not be prescaled.
Figure 19-2. Prescaler for synchronous Timer/Counters
• Bit 7 – TSM - Timer/Counter Synchronization Mode
Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this
mode the value that is written to the PSRASY and PSRSYNC bits is kept, hence
keeping the corresponding prescaler reset signals asserted. This ensures that the
corresponding Timer/Counters are halted and can be configured to the same value
without the risk of one of them advancing during the configuration. When the TSM bit is
written to zero, the PSRASY and PSRSYNC bits are cleared by hardware and the
Timer/Counters simultaneously start counting.
• Bit 6:2 – Res4:0 - Reserved
PSR10
clk
Bit
$23 ($43)
Read/Write
Initial Value
CSn0
CSn1
CSn2
Tn
Tn
I/O
Synchronization
Synchronization
TSM
RW
7
0
Res4
R
6
0
TIMER/COUNTERn CLOCK SOURCE
Res3
R
5
0
clk
Clear
Tn
Res2
ExtClk
R
4
0
< f
Res1
clk_I/O
R
3
0
/2) given a 50/50% duty cycle. Since
clk_I/O
Res0
CSn0
CSn1
CSn2
R
2
0
/2.5. An external clock source
PSRASY PSRSYNC
TIMER/COUNTERn CLOCK SOURCE
R
1
0
8266B-MCU Wireless-03/11
RW
0
0
clk
Tn
GTCCR

Related parts for ATMEGA128RFA1-ZU