ATMEGA128RFA1-ZU Atmel, ATMEGA128RFA1-ZU Datasheet - Page 230

IC AVR MCU 2.4GHZ XCEIVER 64QFN

ATMEGA128RFA1-ZU

Manufacturer Part Number
ATMEGA128RFA1-ZU
Description
IC AVR MCU 2.4GHZ XCEIVER 64QFN
Manufacturer
Atmel
Series
ATMEGAr

Specifications of ATMEGA128RFA1-ZU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3.5dBm
Sensitivity
-100dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
12.5mA
Current - Transmitting
14.5mA
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Rf Ic Case Style
QFN
No. Of Pins
64
Supply Voltage Range
1.8V To 3.6V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
38
Number Of Timers
6
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVR128RFA1-EK1
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128RFA1-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128RFA1-ZUR
Manufacturer:
ON
Quantity:
56 000
17.5.1 Force Output Compare
17.5.2 Compare Match Blocking by TCNT0 Write
17.5.3 Using the Output Compare Unit
230
ATmega128RFA1
Figure 17-3. Output Compare Unit, Block Diagram
The OCR0x Registers are double buffered when using any of the Pulse Width
Modulation (PWM) modes. For the normal and Clear Timer on Compare (CTC) modes
of operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCR0x Compare Registers to either TOP or BOTTOM of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical
PWM pulses and thereby making the output glitch-free.
The OCR0x Register access may seem complex, but this is not the case. When the
double buffering is enabled, the CPU has access to the OCR0x Buffer Register. If
double buffering is disabled the CPU will access the OCR0x directly.
In non-PWM waveform generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOC0x) bit. Forcing Compare
Match will not set the OCF0x Flag or reload/clear the timer, but the OC0x pin will be
updated as if a real Compare Match had occurred (the COM0x1:0 bits settings define
whether the OC0x pin is set, cleared or toggled).
All CPU write operations to the TCNT0 Register will block any Compare Match that
occur in the next timer clock cycle, even when the timer is stopped. This feature allows
OCR0x to be initialized to the same value as TCNT0 without triggering an interrupt
when the Timer/Counter clock is enabled.
Since writing TCNT0 in any mode of operation will block all Compare Matches for one
timer clock cycle, there are risks involved when changing TCNT0 while using the Output
Compare Unit, independently of whether the Timer/Counter is running or not. If the
value written to TCNT0 equals the OCR0x value, the Compare Match will be missed
resulting in an incorrect waveform generation. Similarly, do not write the TCNT0 value
equal to BOTTOM when the counter is down-counting.
The setup of the OC0x should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OC0x value is to use the Force
Output Compare (FOC0x) strobe bits in Normal mode. The OC0x Registers keep their
values even when changing between Waveform Generation modes.
bottom
FOCn
top
OCRnx
Waveform Generator
WGMn1:0
=
(8-bit Comparator )
DATA BUS
COMnX1:0
TCNTn
OCFnx (Int.Req.)
OCnx
8266B-MCU Wireless-03/11

Related parts for ATMEGA128RFA1-ZU