ATMEGA128RFA1-ZU Atmel, ATMEGA128RFA1-ZU Datasheet - Page 235

IC AVR MCU 2.4GHZ XCEIVER 64QFN

ATMEGA128RFA1-ZU

Manufacturer Part Number
ATMEGA128RFA1-ZU
Description
IC AVR MCU 2.4GHZ XCEIVER 64QFN
Manufacturer
Atmel
Series
ATMEGAr

Specifications of ATMEGA128RFA1-ZU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3.5dBm
Sensitivity
-100dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
12.5mA
Current - Transmitting
14.5mA
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Rf Ic Case Style
QFN
No. Of Pins
64
Supply Voltage Range
1.8V To 3.6V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
38
Number Of Timers
6
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVR128RFA1-EK1
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128RFA1-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128RFA1-ZUR
Manufacturer:
ON
Quantity:
56 000
17.7.4 Phase Correct PWM Mode
8266A-MCU Wireless-12/09
equal to MAX will result in a constantly high or low output (depending on the polarity of
the output set by the COM0A1:0 bits.)
A frequency with 50% duty cycle waveform output in fast PWM mode can be achieved
by setting OC0x to toggle its logical level on each Compare Match (COM0x1:0 = 1). The
generated waveform will have a maximum frequency of f
OCR0A is set to zero. This feature is similar to the OC0A toggle in CTC mode, except
that in the fast PWM mode the double buffer feature of the Output Compare unit is
enabled.
The phase correct pulse-width modulation (PWM) mode (WGM02:0 = 1 or 5) provides a
phase-correct, high-resolution PWM waveform generation option. The phase correct
PWM mode is based on a dual-slope operation. The counter counts repeatedly from
BOTTOM to TOP and then from TOP to BOTTOM. TOP is defined as 0xFF when
WGM2:0 = 1 and TOP = OCR0A when WGM2:0 = 5. In non-inverting Compare Output
mode, the Output Compare (OC0x) is cleared on the Compare Match between TCNT0
and OCR0x while up-counting, and OC0x is set on the Compare Match while down-
counting. The operation is inverted in inverting Output Compare mode. The dual-slope
operation has a lower maximum operation frequency than single-slope operation.
However, due to the symmetric feature of the dual-slope PWM modes, these modes are
preferred for motor control applications.
In phase correct PWM mode the counter is incremented until the counter value matches
TOP. The counter changes the direction when reaching TOP. The TCNT0 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM
mode is shown in
as a histogram illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes
represent Compare Matches between OCR0x and TCNT0.
Figure 17-7. Phase Correct PWM Mode Timing Diagram
The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches
BOTTOM. The Interrupt Flag can be used to generate an interrupt each time the
counter reaches the BOTTOM value.
TCNTn
OCnx
OCnx
Period
Figure 17-7
1
below. The TCNT0 value is shown in the timing diagram
2
ATmega128RFA1
3
OC0xPWM
OCnx Interrupt Flag Set
OCRnx Update
TOVn Interrupt Flag Set
(COMnx1:0 = 2)
(COMnx1:0 = 3)
= f
clk_I/O
/2 when
235

Related parts for ATMEGA128RFA1-ZU