AT32UC3L032-D3UR Atmel, AT32UC3L032-D3UR Datasheet - Page 376

MCU AVR32 32KB FLASH 48TLLGA

AT32UC3L032-D3UR

Manufacturer Part Number
AT32UC3L032-D3UR
Description
MCU AVR32 32KB FLASH 48TLLGA
Manufacturer
Atmel
Series
AVR®32 UC3r
Datasheet

Specifications of AT32UC3L032-D3UR

Core Processor
AVR
Core Size
32-Bit
Speed
50MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, PWM, WDT
Number Of I /o
36
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
1.62 V ~ 3.6 V
Data Converters
A/D 9x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-TLLGA
Processor Series
AT32UC3x
Core
AVR32
Data Bus Width
32 bit
Data Ram Size
16 KB
Interface Type
SPI, TWI, USART
Maximum Clock Frequency
50 MHz
Number Of Programmable I/os
36
Number Of Timers
7
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR32, EWAVR32-BL
Development Tools By Supplier
AT32UC3L-EK
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 9 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
19.6.4
19.6.4.1
19.6.4.2
32099F–11/2010
SPI Mode
Modes of Operation
Baud Rate
The Serial Peripheral Interface (SPI) Mode is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.
The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master” which controls the data
flow, while the other devices act as “slaves'' which have data shifted into and out by the master.
Different CPUs can take turns being masters and one master may simultaneously shift data into
multiple slaves. (Multiple Master Protocol is the opposite of Single Master Protocol, where one
CPU is always the master while all of the others are always slaves.) However, only one slave
may drive its output to write data back to the master at any given time.
A slave device is selected when its NSS signal is asserted by the master. The USART in SPI
Master mode can address only one SPI Slave because it can generate only one NSS signal.
The SPI system consists of two data lines and two control lines:
The USART can operate in Master Mode or in Slave Mode.
Operation in SPI Master Mode is programmed by writing at 0xE the MODE field in the Mode
Register. In this case the SPI lines must be connected as described below:
Operation in SPI Slave Mode is programmed by writing at 0xF the MODE field in the Mode Reg-
ister. In this case the SPI lines must be connected as described below:
In order to avoid unpredicted behavior, any change of the SPI Mode must be followed by a soft-
ware reset of the transmitter and of the receiver (except the initial configuration after a hardware
reset).
In SPI Mode, the baudrate generator operates in the same way as in USART synchronous
mode:
• Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
• Master In Slave Out (MISO): This data line supplies the output data from a slave to the input
• Serial Clock (CLK): This control line is driven by the master and regulates the flow of the data
• Slave Select (NSS): This control line allows the master to select or deselect the slave.
• the MOSI line is driven by the output pin TXD
• the MISO line drives the input pin RXD
• the CLK line is driven by the output pin CLK
• the NSS line is driven by the output pin RTS
• the MOSI line drives the input pin RXD
• the MISO line is driven by the output pin TXD
• the CLK line drives the input pin CLK
• the NSS line drives the input pin CTS
into the input of the slave.
of the master.
bits. The master may transmit data at a variety of baud rates. The CLK line cycles once for
each bit that is transmitted.
See Section “19.6.1.4” on page 364.
However, there are some restrictions:
AT32UC3L016/32/64
376

Related parts for AT32UC3L032-D3UR