AT32UC3L032-D3UR Atmel, AT32UC3L032-D3UR Datasheet - Page 738

MCU AVR32 32KB FLASH 48TLLGA

AT32UC3L032-D3UR

Manufacturer Part Number
AT32UC3L032-D3UR
Description
MCU AVR32 32KB FLASH 48TLLGA
Manufacturer
Atmel
Series
AVR®32 UC3r
Datasheet

Specifications of AT32UC3L032-D3UR

Core Processor
AVR
Core Size
32-Bit
Speed
50MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, PWM, WDT
Number Of I /o
36
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
1.62 V ~ 3.6 V
Data Converters
A/D 9x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-TLLGA
Processor Series
AT32UC3x
Core
AVR32
Data Bus Width
32 bit
Data Ram Size
16 KB
Interface Type
SPI, TWI, USART
Maximum Clock Frequency
50 MHz
Number Of Programmable I/os
36
Number Of Timers
7
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR32, EWAVR32-BL
Development Tools By Supplier
AT32UC3L-EK
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 9 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
31.3.8.4
31.3.8.5
31.3.8.6
31.3.8.7
32099F–11/2010
Ownership Trace
Watchpoint Messages
Event In and Event Out Pins
Software Quality Analysis (SQA)
each of which are controlled by a pair of OCD registers which determine the range of addresses
(or single address) which should produce data trace messages.
Program and data trace operate on virtual addresses. In cases where an operating system runs
several processes in overlapping virtual memory segments, the Ownership Trace feature can be
used to identify the process switch. When the O/S activates a process, it will write the process ID
number to an OCD register, which produces an Ownership Trace Message, allowing the debug-
ger to switch context for the subsequent program and data trace messages. As the use of this
feature depends on the software running on the CPU, it can also be used to extract other types
of information from the system.
The breakpoint modules normally used to generate program and data breakpoints can also be
used to generate Watchpoint messages, allowing a debugger to monitor program and data
events without halting the CPU. Watchpoints can be enabled independently of breakpoints, so a
breakpoint module can optionally halt the CPU when the trigger condition occurs. Data trace
modules can also be configured to produce watchpoint messages instead of regular data trace
messages.
The AUX port also contains an Event In pin (EVTI_N) and an Event Out pin (EVTO_N). EVTI_N
can be used to trigger a breakpoint when an external event occurs. It can also be used to trigger
specific program and data trace synchronization messages, allowing an external event to be
correlated to the program flow.
When the CPU enters debug mode, a Debug Status message is transmitted on the trace port.
All trace messages can be timestamped when they are received by the debug tool. However,
due to the latency of the transmit queue buffering, the timestamp will not be 100% accurate. To
improve this, EVTO_N can toggle every time a message is inserted into the transmit queue,
allowing trace messages to be timestamped precisely. EVTO_N can also toggle when a break-
point module triggers, or when the CPU enters debug mode, for any reason. This can be used to
measure precisely when the respective internal event occurs.
Software Quality Analysis (SQA) deals with two important issues regarding embedded software
development. Code coverage involves identifying untested parts of the embedded code, to
improve test procedures and thus the quality of the released software. Performance analysis
allows the developer to precisely quantify the time spent in various parts of the code, allowing
bottlenecks to be identified and optimized.
Program trace must be used to accomplish these tasks without instrumenting (altering) the code
to be examined. However, traditional program trace cannot reconstruct the current PC value
without correlating the trace information with the source code, which cannot be done on-the-fly.
This limits program trace to a relatively short time segment, determined by the size of the trace
buffer in the debug tool.
The OCD system in AT32UC3L016/32/64 extends program trace with SQA capabilities, allowing
the debug tool to reconstruct the PC value on-the-fly. Code coverage and performance analysis
can thus be reported for an unlimited execution sequence.
AT32UC3L016/32/64
738

Related parts for AT32UC3L032-D3UR