AT32UC3L032-D3UR Atmel, AT32UC3L032-D3UR Datasheet - Page 596

MCU AVR32 32KB FLASH 48TLLGA

AT32UC3L032-D3UR

Manufacturer Part Number
AT32UC3L032-D3UR
Description
MCU AVR32 32KB FLASH 48TLLGA
Manufacturer
Atmel
Series
AVR®32 UC3r
Datasheet

Specifications of AT32UC3L032-D3UR

Core Processor
AVR
Core Size
32-Bit
Speed
50MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, PWM, WDT
Number Of I /o
36
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
1.62 V ~ 3.6 V
Data Converters
A/D 9x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-TLLGA
Processor Series
AT32UC3x
Core
AVR32
Data Bus Width
32 bit
Data Ram Size
16 KB
Interface Type
SPI, TWI, USART
Maximum Clock Frequency
50 MHz
Number Of Programmable I/os
36
Number Of Timers
7
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR32, EWAVR32-BL
Development Tools By Supplier
AT32UC3L-EK
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 9 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
25.5
32099F–11/2010
Application Example
tem will only be woken up if the user peripheral generates an interrupt as a result of the
operation. This concept is known as SleepWalking
Power Manager chapter. Note that asynchronous peripheral events may be associated with a
delay due to the need to restart the system clock source if this has been stopped in the sleep
mode.
This application example shows how the Peripheral Event System can be used to program the
ADC Interface to perform ADC conversions at selected intervals.
Conversions of the active analog channels are started with a software or a hardware trigger.
One of the possible hardware triggers is a peripheral event trigger, allowing the Peripheral Event
System to synchronize conversion with some configured peripheral event source. From
25-3
peripheral event, or an event from the PWM Controller. The AST can generate periodic periph-
eral events at selected intervals, among other types of peripheral events. The Peripheral Event
System can then be used to set up the ADC Interface to sample an analog signal at regular
intervals.
The user must enable peripheral events in the AST and in the ADC Interface to accomplish this.
The periodic peripheral event in the AST is enabled by writing a one to the corresponding bit in
the AST Event Enable Register (EVE). To select the peripheral event trigger for the ADC Inter-
face, the user must write the value 0x7 to the Trigger Mode (TRGMOD) field in the ADC
Interface Trigger Register (TRGR). When the peripheral events are enabled, the AST will gener-
ate peripheral events at the selected intervals, and the Peripheral Event System will route the
peripheral events to the ADC Interface, which will perform ADC conversions at the selected
intervals.
Figure 25-2. Application Example
Since the AST peripheral event is asynchronous, the description above will also work in sleep
modes where the ADC clock is stopped. In this case, the ADC clock (and clock source, if
needed) will be restarted during the ADC conversion. After the conversion, the ADC clock and
clock source will return to the sleep state, unless the ADC generates an interrupt, which in turn
will wake up the system. Using asynchronous interrupts thus allows ADC operation in much
lower power states than would otherwise be possible.
and
Table
AST
Periodic peripheral
25-4, it can be read that this peripheral event source can be either an AST
event
Peripheral
System
Event
conversion
and is described in further detail in the
Trigger
AT32UC3L016/32/64
Interface
ADC
Table
596

Related parts for AT32UC3L032-D3UR