SAM9G10 Atmel Corporation, SAM9G10 Datasheet - Page 228

no-image

SAM9G10

Manufacturer Part Number
SAM9G10
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9G10

Flash (kbytes)
0 Kbytes
Pin Count
217
Max. Operating Frequency
266 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
96
Ext Interrupts
96
Usb Transceiver
3
Usb Speed
Full Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
1
Uart
4
Ssc
3
Sd / Emmc
1
Graphic Lcd
Yes
Video Decoder
No
Camera Interface
No
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
16
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.08 to 1.32
Fpu
No
Mpu / Mmu
No/Yes
Timers
3
Output Compare Channels
3
Input Capture Channels
3
32khz Rtc
Yes
Calibrated Rc Oscillator
No
Figure 23-5. Input Glitch Filter Timing
228
228
SAM9G35
SAM9G35
if PIO_IFSR = 0
if PIO_IFSR = 1
PIO_PDSR
PIO_PDSR
Pin Level
MCK
For the debouncing filter, the Period of the Divided Slow Clock is performed by writing in the DIV
field of the PIO_SCDR (Slow Clock Divider Register)
Tdiv_slclk = ((DIV+1)*2).Tslow_clock
When the glitch or debouncing filter is enabled, a glitch or pulse with a duration of less than 1/2
Selected Clock Cycle (Selected Clock represents MCK or Divided Slow Clock depending on
PIO_IFSCDR and PIO_IFSCER programming) is automatically rejected, while a pulse with a
duration of 1 Selected Clock (MCK or Divided Slow Clock) cycle or more is accepted. For pulse
durations between 1/2 Selected Clock cycle and 1 Selected Clock cycle the pulse may or may
not be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to
be visible it must exceed 1 Selected Clock cycle, whereas for a glitch to be reliably filtered out,
its duration must not exceed 1/2 Selected Clock cycle.
The filters also introduce some latencies, this is illustrated in
The glitch filters are controlled by the register set: PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the I/O lines.
When the glitch and/or debouncing filter is enabled, it does not modify the behavior of the inputs
on the peripherals. It acts only on the value read in PIO_PDSR and on the input change interrupt
detection. The glitch and debouncing filters require that the PIO Controller clock is enabled.
• If PIO_IFSCSR[i] = 1: The debouncing filter can filter a pulse with a duration of less than 1/2
Period of the Programmable Divided Slow Clock.
1 cycle
1 cycle
PIO_IFCSR = 0
up to 1.5 cycles
1 cycle
up to 2.5 cycles
2 cycles
Figure 23-5
up to 2 cycles
and
11053B–ATARM–22-Sep-11
11053B–ATARM–22-Sep-11
1 cycle
1 cycle
Figure
23-6.

Related parts for SAM9G10