ATxmega128B1 Atmel Corporation, ATxmega128B1 Datasheet - Page 10

no-image

ATxmega128B1

Manufacturer Part Number
ATxmega128B1
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATxmega128B1

Flash (kbytes)
128 Kbytes
Pin Count
100
Max. Operating Frequency
32 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
53
Ext Interrupts
53
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
3
Twi (i2c)
1
Uart
2
Segment Lcd
160
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
16
Adc Resolution (bits)
12
Adc Speed (ksps)
2000
Analog Comparators
4
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
AES/DES
Sram (kbytes)
8
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.6 to 3.6
Operating Voltage (vcc)
1.6 to 3.6
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
10
Input Capture Channels
10
Pwm Channels
10
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATxmega128B1-AU
Manufacturer:
TI
Quantity:
90
Part Number:
ATxmega128B1-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATxmega128B1-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATxmega128B1-CUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATxmega128B1-U
Manufacturer:
FUJITSU
Quantity:
632
3.9
3.9.1
8291A–AVR–10/11
Register File
The X-, Y-, and Z- Registers
The SP is decremented by one when data are pushed on the stack with the PUSH instruction,
and incremented by one when data is popped off the stack using the POP instruction.
To prevent corruption when updating the stack pointer from software, a write to SPL will auto-
matically disable interrupts for up to four instructions or until the next I/O memory write.
The register file consists of 32 x 8-bit general purpose working registers with single clock cycle
access time. The register file supports the following input/output schemes:
Six of the 32 registers can be used as three 16-bit address register pointers for data space
addressing, enabling efficient address calculations. One of these address pointers can also be
used as an address pointer for lookup tables in flash program memory.
Figure 3-4.
The register file is located in a separate address space, and so the registers are not accessible
as data memory.
Registers R26..R31 have added functions besides their general-purpose usage.
These registers can form 16-bit address pointers for addressing data memory. These three
address registers are called the X-register, Y-register, and Z-register. The Z-register can also be
used as an address pointer to read from and/or write to the flash program memory, signature
rows, fuses, and lock bits.
• One 8-bit output operand and one 8-bit result input
• Two 8-bit output operands and one 8-bit result input
• Two 8-bit output operands and one 16-bit result input
• One 16-bit output operand and one 16-bit result input
AVR CPU general purpose working registers.
Registers
Purpose
General
Working
7
R13
R14
R15
R16
R17
R26
R27
R28
R29
R30
R31
R0
R1
R2
0
Atmel AVR XMEGA B
Addr.
0x0D
0x0E
0x0F
0x1A
0x1B
0x1C
0x1D
0x1E
0x1F
0x00
0x01
0x02
0x10
0x11
X-register High Byte
Y-register High Byte
Z-register High Byte
X-register Low Byte
Y-register Low Byte
Z-register Low Byte
10

Related parts for ATxmega128B1