ATxmega128B1 Atmel Corporation, ATxmega128B1 Datasheet - Page 21

no-image

ATxmega128B1

Manufacturer Part Number
ATxmega128B1
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATxmega128B1

Flash (kbytes)
128 Kbytes
Pin Count
100
Max. Operating Frequency
32 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
53
Ext Interrupts
53
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
3
Twi (i2c)
1
Uart
2
Segment Lcd
160
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
16
Adc Resolution (bits)
12
Adc Speed (ksps)
2000
Analog Comparators
4
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
AES/DES
Sram (kbytes)
8
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.6 to 3.6
Operating Voltage (vcc)
1.6 to 3.6
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
10
Input Capture Channels
10
Pwm Channels
10
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATxmega128B1-AU
Manufacturer:
TI
Quantity:
90
Part Number:
ATxmega128B1-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATxmega128B1-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATxmega128B1-CUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATxmega128B1-U
Manufacturer:
FUJITSU
Quantity:
632
4.3.4
4.3.5
4.4
4.5
8291A–AVR–10/11
Fuses and Lockbits
Data Memory
Production Signature Row
User Signature Row
ming when executing from this section. The SPM instruction can access the entire flash,
including the boot loader section itself. The protection level for the boot loader section can be
selected by the boot loader lock bits. If this section is not used for boot loader software, applica-
tion code can be stored here.
The production signature row is a separate memory section for factory programmed data. It con-
tains calibration data for functions such as oscillators and analog modules. Some of the
calibration values will be automatically loaded to the corresponding module or peripheral unit
during reset. Other values must be loaded from the signature row and written to the correspond-
ing peripheral registers from software. For details on calibration conditions such as temperature,
voltage references, etc. refer to device datasheet.
The production signature row also contains an ID that identifies each microcontroller device type
and a serial number for each manufactured device. The serial number consists of the production
lot number, wafer number, and wafer coordinates for the device.
The production signature row cannot be written or erased, but it can be read from application
software and external programmers.
The user signature row is a separate memory section that is fully accessible (read and write)
from application software and external programmers. It is one flash page in size, and is meant
for static user parameter storage, such as calibration data, custom serial number, identification
numbers, random number seeds, etc. This section is not erased by chip erase commands that
erase the flash, and requires a dedicated erase command. This ensures parameter storage dur-
ing multiple program/erase operations and on-chip debug sessions.
The fuses are used to configure important system functions, and can only be written from an
external programmer. The application software can read the fuses. The fuses are used to config-
ure reset sources such as brownout detector and watchdog, startup configuration, JTAG enable,
and JTAG user ID.
The lock bits are used to set protection levels for the different flash sections (i.e., if read and/or
write access should be blocked). Lock bits can be written by external programmers and applica-
tion software, but only to stricter protection levels. Chip erase is the only way to erase the lock
bits. To ensure that flash contents are protected even during chip erase, the lock bits are erased
after the rest of the flash memory has been erased.
An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit
will have the value zero.
Both fuses and lock bits are reprogrammable like the flash program memory.
The data memory contains the I/O memory, internal SRAM and optionally memory mapped
EEPROM. The data memory is organized as one continuous memory section, as shown in
ure 4-2 on page
22.
Atmel AVR XMEGA B
Fig-
21

Related parts for ATxmega128B1