LPC1837FET256,551 NXP Semiconductors, LPC1837FET256,551 Datasheet - Page 934

no-image

LPC1837FET256,551

Manufacturer Part Number
LPC1837FET256,551
Description
Microcontrollers (MCU) 32BIT ARM CORTEX-M3 MCU 136KB SRAM
Manufacturer
NXP Semiconductors
Series
LPC18xxr

Specifications of LPC1837FET256,551

Core
ARM Cortex M3
Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
150MHz
Connectivity
CAN, EBI/EMI, Ethernet, I²C, Microwire, SD/MMC, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
80
Program Memory Size
1MB (1M x 8)
Program Memory Type
FLASH
Eeprom Size
-
Ram Size
136K x 8
Voltage - Supply (vcc/vdd)
2 V ~ 3.6 V
Data Converters
A/D 16x10b; D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
256-LBGA
Lead Free Status / Rohs Status
 Details
Other names
935293795551
NXP Semiconductors
<Document ID>
User manual
40.11.2
Algorithm and procedure for signature generation
Signature generation
A signature can be generated for any part of the flash contents. The address range to be
used for signature generation is defined by writing the start address to the FMSSTART
register, and the stop address to the FMSSTOP register.
The signature generation is started by writing a ‘1’ to FMSSTOP.MISR_START. Starting
the signature generation is typically combined with defining the stop address, which is
done in another field FMSSTOP.FMSSTOP of the same register.
The time that the signature generation takes is proportional to the address range for which
the signature is generated. Reading of the flash memory for signature generation uses a
self-timed read mechanism and does not depend on any configurable timing settings for
the flash. A safe estimation for the duration of the signature generation is:
When signature generation is triggered via software, the duration is in AHB clock cycles,
and tcy is the time in ns for one AHB clock. The SIG_DONE bit in FMSTAT can be polled
by software to determine when signature generation is complete.
If signature generation is triggered via JTAG, the duration is in JTAG tck cycles, and tcy is
the time in ns for one JTAG clock. Polling the SIG_DONE bit in FMSTAT is not possible in
this case.
After signature generation, a 128-bit signature can be read from the FMSW0 to FMSW3
registers. The 128-bit signature reflects the corrected data read from the flash. The 128-bit
signature reflects flash parity bits and check bit values.
Content verification
The signature as it is read from the FMSW0 to FMSW3 registers must be equal to the
reference signature. The algorithms to derive the reference signature is given in
Figure
Fig 150. Algorithm for generating a 128 bit signature
Duration = int( (60 / tcy) + 3 ) x (FMSSTOP - FMSSTART + 1)
sign = 0
FOR address = FMSTART.FMSTART TO FMSTOP.FMSTOP
{
}
signature128 = sign
150.
FOR i = 0 TO 126
sign = nextSign
All information provided in this document is subject to legal disclaimers.
nextSign[i] = f_Q[address][i] XOR sign[i+1]
nextSign[127] = f_Q[address][127] XOR sign[0] XOR sign[2] XOR
Rev. 00.13 — 20 July 2011
sign[27] XOR sign[29]
Chapter 40: LPC18xx flash programming interface
UM10430
© NXP B.V. 2011. All rights reserved.
934 of 1164

Related parts for LPC1837FET256,551