MCBSTM32EXL Keil, MCBSTM32EXL Datasheet - Page 829

no-image

MCBSTM32EXL

Manufacturer Part Number
MCBSTM32EXL
Description
BOARD EVALUATION FOR STM32F103ZE
Manufacturer
Keil
Datasheets

Specifications of MCBSTM32EXL

Lead Free Status / RoHS Status
Lead free / RoHS Compliant
RM0008
26.15.7
application receives this interrupt, it must set the STALL bit in the corresponding endpoint
control register, and clear this interrupt.
Worst case response time
When the OTG_FS controller acts as a device, there is a worst case response time for any
tokens that follow an isochronous OUT. This worst case response time depends on the AHB
clock frequency.
The core registers are in the AHB domain, and the core does not accept another token
before updating these register values. The worst case is for any token following an
isochronous OUT, because for an isochronous transaction, there is no handshake and the
next token could come sooner. This worst case value is 7 PHY clocks when the AHB clock is
the same as the PHY clock. When the AHB clock is faster, this value is smaller.
If this worst case condition occurs, the core responds to bulk/interrupt tokens with a NAK
and drops isochronous and SETUP tokens. The host interprets this as a timeout condition
for SETUP and retries the SETUP packet. For isochronous transfers, the Incomplete
isochronous IN transfer interrupt (IISOIXFR) and Incomplete isochronous OUT transfer
interrupt (IISOOXFR) inform the application that isochronous IN/OUT packets were
dropped.
Choosing the value of TRDT in OTG_FS_GUSBCFG
The value in TRDT (OTG_FS_GUSBCFG) is the time it takes for the MAC, in terms of PHY
clocks after it has received an IN token, to get the FIFO status, and thus the first data from
the PFC (packet FIFO controller) block. This time involves the synchronization delay
between the PHY and AHB clocks. The worst case delay for this is when the AHB clock is
the same as the PHY clock. In this case, the delay is 5 clocks.
Once the MAC receives an IN token, this information (token received) is synchronized to the
AHB clock by the PFC (the PFC runs on the AHB clock). The PFC then reads the data from
the SPRAM and writes them into the dual clock source buffer. The MAC then reads the data
out of the source buffer (4 deep).
If the AHB is running at a higher frequency than the PHY, the application can use a smaller
value for TRDT (in OTG_FS_GUSBCFG).
Figure 279
The application can use the following formula to calculate the value of TRDT:
tkn_rcvd: Token received information from MAC to PFC
dynced_tkn_rcvd: Doubled sync tkn_rcvd, from PCLK to HCLK domain
spr_read: Read to SPRAM
spr_addr: Address to SPRAM
spr_rdata: Read data from SPRAM
srcbuf_push: Push to the source buffer
srcbuf_rdata: Read data from the source buffer. Data seen by MAC
4 × AHB clock + 1 PHY clock = (2 clock sync + 1 clock memory address + 1 clock
memory data from sync RAM) + (1 PHY clock (next PHY clock MAC can sample the 2
clock FIFO outputs)
has the following signals:
Doc ID 13902 Rev 9
USB on-the-go full-speed (OTG_FS)
829/995

Related parts for MCBSTM32EXL